a post with geojson

This is an example post with some geojson code. The support is provided thanks to Leaflet. To create your own visualization, go to geojson.io.

```geojson
{
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "properties": {},
      "geometry": {
        "coordinates": [
          [
            [
              -60.11363029935569,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -2.904625022183211
            ]
          ]
        ],
        "type": "Polygon"
      }
    }
  ]
}
```

Which generates:

{
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "properties": {},
      "geometry": {
        "coordinates": [
          [
            [
              -60.11363029935569,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -2.904625022183211
            ]
          ]
        ],
        "type": "Polygon"
      }
    }
  ]
}



Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Causal-Sklearn - 基于CausalEngine™核心的因果回归和分类
  • AI 的哥白尼时刻:我们关于线性因果律的大胆宣言
  • Cauchy Distribution: A Statistical Gem Not to Be Overlooked
  • 基于个体随机变量假设的分布回归方法
  • Qwen 3: Alibaba Cloud's Latest LLM Breakthrough (and a Workflow Test)