a post with vega lite

This is an example post with some vega lite code.

```vega_lite
{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
  "description": "A dot plot showing each movie in the database, and the difference from the average movie rating. The display is sorted by year to visualize everything in sequential order. The graph is for all Movies before 2019.",
  "data": {
    "url": "https://raw.githubusercontent.com/vega/vega/main/docs/data/movies.json"
  },
  "transform": [
    {"filter": "datum['IMDB Rating'] != null"},
    {"filter": {"timeUnit": "year", "field": "Release Date", "range": [null, 2019]}},
    {
      "joinaggregate": [{
        "op": "mean",
        "field": "IMDB Rating",
        "as": "AverageRating"
      }]
    },
    {
      "calculate": "datum['IMDB Rating'] - datum.AverageRating",
      "as": "RatingDelta"
    }
  ],
  "mark": "point",
  "encoding": {
    "x": {
      "field": "Release Date",
      "type": "temporal"
    },
    "y": {
      "field": "RatingDelta",
      "type": "quantitative",
      "title": "Rating Delta"
    },
    "color": {
      "field": "RatingDelta",
      "type": "quantitative",
      "scale": {"domainMid": 0},
      "title": "Rating Delta"
    }
  }
}
```

Which generates:

{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
  "description": "A dot plot showing each movie in the database, and the difference from the average movie rating. The display is sorted by year to visualize everything in sequential order. The graph is for all Movies before 2019.",
  "data": {
    "url": "https://raw.githubusercontent.com/vega/vega/main/docs/data/movies.json"
  },
  "transform": [
    {"filter": "datum['IMDB Rating'] != null"},
    {"filter": {"timeUnit": "year", "field": "Release Date", "range": [null, 2019]}},
    {
      "joinaggregate": [{
        "op": "mean",
        "field": "IMDB Rating",
        "as": "AverageRating"
      }]
    },
    {
      "calculate": "datum['IMDB Rating'] - datum.AverageRating",
      "as": "RatingDelta"
    }
  ],
  "mark": "point",
  "encoding": {
    "x": {
      "field": "Release Date",
      "type": "temporal"
    },
    "y": {
      "field": "RatingDelta",
      "type": "quantitative",
      "title": "Rating Delta"
    },
    "color": {
      "field": "RatingDelta",
      "type": "quantitative",
      "scale": {"domainMid": 0},
      "title": "Rating Delta"
    }
  }
}

This plot supports both light and dark themes.




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Causal-Sklearn - 基于CausalEngine™核心的因果回归和分类
  • AI 的哥白尼时刻:我们关于线性因果律的大胆宣言
  • Cauchy Distribution: A Statistical Gem Not to Be Overlooked
  • 基于个体随机变量假设的分布回归方法
  • Qwen 3: Alibaba Cloud's Latest LLM Breakthrough (and a Workflow Test)